These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip. Author: Yuk JS, Gibson GN, Rice JM, Guignon EF, Lynes MA. Journal: Analyst; 2012 Jun 07; 137(11):2574-81. PubMed ID: 22498719. Abstract: We have developed a novel dual mode immunoassay platform that combines the advantages of real-time, label free measurement of surface plasmon resonance (SPR) and the highly directional surface plasmon-coupled emission (SPCE) using a gold grating-based sensor chip. Since only fluorophore-labeled analyte molecules that are close to the metal surface of the sensor chip will couple to the surface plasmon, SPCE detection is highly surface-specific leading to background suppression and increased sensitivity. Theoretical calculations were done to find SPR and SPCE angles for a sensor chip optimized for Alexa Fluor 647. We have confirmed the SPR and SPCE responses on the dual mode sensor chip using Alexa Fluor 647 labeled anti-mouse IgG. Signal fluctuation of the dual mode sensor chip reader was below 1.2% and 0.8% for SPR and SPCE, respectively. The SPR response in this configuration showed a minimum detection level of 1 μg ml(-1), and the SPCE response showed a minimum detection level of 1 ng ml(-1) for the same sample. A range of human IgG concentrations in human serum was also analyzed with the dual mode sensor chip. The SPCE measurement is more sensitive than the SPR real-time measurement, and substantially extends the dynamic range of the assay platform, as well as enabling independent measurements of co-localized analytes on the same sensor chip region of interest. Since this assay platform is capable of measuring more than 1000 spatially encoded regions of interest on a 1 cm(2) sensor chip, it has the potential for high-content analyses of biological samples with both research and clinical applications.[Abstract] [Full Text] [Related] [New Search]