These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combining transfer of TTF-1 and Pax-8 gene: a potential strategy to promote radioiodine therapy of thyroid carcinoma.
    Author: Mu D, Huang R, Li S, Ma X, Lou C, Kuang A.
    Journal: Cancer Gene Ther; 2012 Jun; 19(6):402-11. PubMed ID: 22498723.
    Abstract:
    Cotransfer of thyroid-specific transcription factor (TTF)-1 and Pax-8 gene to tumor cells, resulting in the re-expression of iodide metabolism-associated proteins, such as sodium iodide symporter (NIS), thyroglobulin (Tg), thyroperoxidase (TPO), offers the possibility of radioiodine therapy to non-iodide-concentrating tumor because the expression of iodide metabolism-associated proteins in thyroid are mediated by the thyroid transcription factor TTF-1 and Pax-8. The human TTF-1 and Pax-8 gene were transducted into the human thyroid carcinoma (K1 and F133) cells by the recombinant adenovirus, AdTTF-1 and AdPax-8. Re-expression of NIS mRNA and protein, but not TPO and Tg mRNA and protein, was detected in AdTTF-1-infected F133 cells, following with increasing radioiodine uptake (6.1-7.4 times), scarcely iodide organification and rapid iodide efflux (t(1/2) ≈ 8-min in vitro, t(1/2) ≈ 4.7-h in vivo). On contrast, all of the re-expression of NIS, TPO and Tg mRNA and proteins were detected in F133 cells coinfected with AdTTF-1 and AdPax-8. AdTTF-1- and AdPax-8-coinfected K1 and F133 cells could effectively accumulate radioiodine (6.6-7.5 times) and obviously retarded radioiodine retention (t(1/2) ≈ 25-30-min in vitro, t(1/2) ≈ 12-h in vivo) (P<0.05). Accordingly, the effect of radioiodine therapy of TTF-1 and Pax-8 cotransducted K1 and F133 cells (21-25% survival rate in vitro) was better than that of TTF-1-transducted cells (40% survival rate in vitro) (P<0.05). These results indicate that single TTF-1 gene transfer may have limited efficacy of radioiodine therapy because of rapid radioiodine efflux. The cotransduction of TTF-1 and Pax-8 gene, with resulting NIS-mediated radioiodine accumulation and TPO and Tg-mediated radioiodine organification and intracellular retention, may lead to effective radioiodine therapy of thyroid carcinoma.
    [Abstract] [Full Text] [Related] [New Search]