These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation and characterization of hybrid-silica monolithic column with mixed-mode of hydrophilic and strong anion-exchange interactions for pressurized capillary electrochromatography. Author: Wang X, Zheng Y, Zhang C, Yang Y, Lin X, Huang G, Xie Z. Journal: J Chromatogr A; 2012 May 25; 1239():56-63. PubMed ID: 22503622. Abstract: A novel organic-silica hybrid monolithic stationary phase with a mixed-mode of hydrophilic and strong anion-exchange interactions (HI-SAX) was prepared with a modified "one-pot" process of functional monomers and alkoxysilanes. Using a hydrosoluble initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA), the homogeneous prepolymerization system of this hybrid monolith was successfully obtained by a simple operation. The polycondensation of alkoxysilanes (tetramethoxysilane (TMOS) and vinyl-trimethoxysilane (VTMS)) and the in situ copolymerization of a quaternary ammonium group-containing acrylic monomer ([2-(acryloyloxy)ethyl] trimethyl ammonium methyl sulfate (AETA)) on the precondensed siloxanes were achieved. The morphologies of the hybrid-silica monolithic matrixes were observed by SEM, and the performances of the organic-silica hybrid monolithic columns were investigated by pressurized capillary electrochromatography. The mechanical stability and reproducibility of the obtained hybrid monolithic column preformed acceptable. Both hydrophilic interaction chromatography mechanism and strong anion-exchanged interaction were investigated. A mixed mode of HI-SAX was obtained for the analysis of nucleotides with a good resolution, and the separation of polar and basic nucleic acid bases and nucleosides was also achieved without peak tailing.[Abstract] [Full Text] [Related] [New Search]