These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Author: Strasser A, Harris AW, Bath ML, Cory S. Journal: Nature; 1990 Nov 22; 348(6299):331-3. PubMed ID: 2250704. Abstract: The putative oncogene bcl-2 is juxtaposed to the immunoglobulin heavy chain (Igh) locus by the t(14;18) chromosomal translocation typical of human follicular B-cell lymphomas. The bcl-2 gene product is not altered by the translocation, but its expression is deregulated, presumably by the Igh enhancer E mu. Constitutive bcl-2 expression seems to augment cell survival, as infection with a bcl-2 retrovirus enables certain growth factor-dependent mouse cell lines to maintain viability when deprived of factor. Furthermore, high levels of the bcl-2 product can protect human B and T lymphoblasts under stress and thereby confer a growth advantage. Mice expressing a bcl-2 transgene controlled by the Igh enhancer accumulate small non-cycling B cells which survive unusually well in vitro but do not show a propensity for spontaneous tumorigenesis. In contrast, an analogous myc transgene, designed to mimic the myc-Igh translocation product typical of Burkitt's lymphoma and rodent plasmacytoma, promotes B lymphoid cell proliferation and predisposes mice to malignancy in pre-B and B lymphoid cells. Previous experiments have suggested that bcl-2 can cooperate with deregulated myc to improve in vitro growth of pre-B and B cells. Here we describe a marked synergy between bcl-2 and myc in doubly transgenic mice. E mu-bcl-2/myc mice show hyperproliferation of pre-B and B cells and develop tumours much faster than E mu-myc mice. Suprisingly, the tumours derive from a cell with the hallmarks of a primitive haemopoietic cell, perhaps a lymphoid-committed stem cell.[Abstract] [Full Text] [Related] [New Search]