These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant.
    Author: dePamphilis CW, Palmer JD.
    Journal: Nature; 1990 Nov 22; 348(6299):337-9. PubMed ID: 2250706.
    Abstract:
    Photosynthesis is the hallmark of plant life and is the only plastid metabolic process known to be controlled by plastid genes. The complete loss of photosynthetic ability, however, has occurred on several independent occasions in parasitic flowering plants. Some of these plants are known to lack chlorophyll and certain photosynthetic enzymes, but it is not known to what extent changes have occurred in the genes encoding the photosynthetic apparatus or whether the plants even maintain a plastid genome. Here we report that the nonphotosynthetic root parasite Epifagus virginiana has a plastid chromosome only 71 kilobases in size, far smaller than any previously characterized land plant plastid genome. The Epifagus plastid genome has lost most, if not all, of the 30 or more chloroplast genes for photosynthesis and most of a large family of plastid genes, the ndh genes, whose products may be involved in a plastid respiratory chain. The extensive changes in Epifagus plastid gene content must have occurred in a relatively short time (5-50 x 10(6) yr), because Striga asiatica, a related photosynthetic parasite, has a typical complement of chloroplast genes for photosynthesis and chlororespiration. The plastid genome of Epifagus has retained transcribed ribosomal RNA and ribosomal protein genes, suggesting that it expresses one or more gene products for plastid functions not related to photosynthesis.
    [Abstract] [Full Text] [Related] [New Search]