These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Radioiodinated folic acid conjugates: evaluation of a valuable concept to improve tumor-to-background contrast.
    Author: Reber J, Struthers H, Betzel T, Hohn A, Schibli R, Müller C.
    Journal: Mol Pharm; 2012 May 07; 9(5):1213-21. PubMed ID: 22509996.
    Abstract:
    Folic acid radioconjugates can be used for targeting folate receptor positive (FR(+)) tumors. However, the high renal uptake of radiofolates is a drawback of this strategy, particularly with respect to a therapeutic application due to the risk of damage to the kidneys by particle radiation. The goal of this study was to develop and evaluate radioiodinated folate conjugates as a novel class of folate-based radiopharmaceuticals potentially suitable for therapeutic application. Two different folic acid conjugates, tyrosine-folate (1) and tyrosine-click-folate (3), were synthesized and radioiodinated using the Iodogen method resulting in [(125)I]-2 and [(125/131)I]-4. Both radiofolates were highly stable in mouse and human plasma. Determination of FR binding affinities using (3)H-folic acid and FR(+) KB tumor cells revealed affinities in the nanomolar range for 2 and 4. The cell uptake of [(125)I]-2 and [(125/131)I]-4 proved to be FR specific as it was blocked by the coincubation of folic acid. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in vitro assays were employed for the determination of tumor cell viability upon exposure to [(131)I]-4. Compared to untreated control cells, significantly reduced cell viability was observed for FR(+) cancer cells (KB, IGROV-1, SKOV-3), while FR(-) cells (PC-3) were not affected. Biodistribution studies performed in tumor bearing nude mice showed the specific accumulation of both radiofolates in KB tumor xenografts ([(125)I]-2: 3.43 ± 0.28% ID/g; [(125)I]-4: 2.28 ± 0.46% ID/g, 4 h p.i.) and increasing tumor-to-kidney ratios over time. The further improvement of the tumor-to-background contrast was achieved by preinjection of the mice with pemetrexed allowing excellent imaging via single-photon emission computed tomography (SPECT/CT). These findings confirmed the hypothesis that the application of radioiodinated folate conjugates may be a valuable concept to improve tumor-to-background contrast. The inhibitory effect of [(131)I]-4 on FR(+) cancer cells in vitro indicates the potential of this class of radiofolates for therapeutic application.
    [Abstract] [Full Text] [Related] [New Search]