These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced neurotrophin-3 bioactivity and release from a nanoparticle-loaded composite hydrogel. Author: Stanwick JC, Baumann MD, Shoichet MS. Journal: J Control Release; 2012 Jun 28; 160(3):666-75. PubMed ID: 22510446. Abstract: Neurotrophin-3 (NT-3) has shown promise in regenerative strategies after spinal cord injury; however, sustained local delivery is difficult to achieve by conventional methods. Controlled release from poly(lactic-co-glycolic acid) (PLGA) nanoparticles has been studied for numerous proteins, yet achieving sustained release of bioactive proteins remains a challenge. To address these issues, we designed a composite drug delivery system comprised of NT-3 encapsulated in PLGA nanoparticles dispersed in an injectable hydrogel of hyaluronan and methyl cellulose (HAMC). A continuum model was used to fit the in vitro release kinetics of an NT-3 analog from a nanoparticle formulation. Interestingly, the model suggested that the linear drug release observed from composite HAMC was due to a diffusion-limiting layer of methyl cellulose on the particle surface. We then studied the effects of processing parameters and excipient selection on NT-3 release, stability, and bioactivity. Trehalose was shown to be the most effective additive for stabilizing NT-3 during sonication and lyophilization and PLGA itself was shown to stabilize NT-3 during these processes. Of four excipients tested, 400g/mol poly(ethylene glycol) was the most effective during nanoparticle fabrication, with 74% of NT-3 detected by ELISA. Conversely, co-encapsulation of magnesium carbonate with NT-3 was the most effective in maintaining NT-3 bioactivity over 28 days according to a cell-based axonal outgrowth assay. Together, the modeling and optimized processing parameters provide insight critical to designing a controlled bioactive release formulation for ultimate testing in vivo.[Abstract] [Full Text] [Related] [New Search]