These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ERK1/2 signaling pathway in the release of VEGF from Müller cells in diabetes. Author: Ye X, Ren H, Zhang M, Sun Z, Jiang AC, Xu G. Journal: Invest Ophthalmol Vis Sci; 2012 Jun 08; 53(7):3481-9. PubMed ID: 22511624. Abstract: PURPOSE: Diabetic retinopathy (DR) is one of the most serious complications of diabetes and has become a major blinding eye disease, but its treatment remains unsatisfactory. The ERK1/2 signaling pathway has been shown to participate in regulating secretion of VEGF in DR from our previous studies. The role of VEGF in the development of DR provides a target for treatment. Our present research focuses on Müller cells, a major source of VEGF secretion, to investigate the role of ERK1/2 signaling pathway on regulation of VEGF release in diabetes. METHODS: Immunofluorescence was used to observe the ERK1/2 phosphorylation activity on early diabetic rat retinal Müller cells. Müller cells were stimulated by high glucose in vitro. Western blot and immunohistochemistry were used to determine ERK1/2 signaling pathway expression and phosphorylation. AP-1 DNA binding activity status was monitored by electrophoretic mobility shift assay (EMSA). ELISA and PCR monitored VEGF secretion. Inhibition of ERK1/2 phosphorylation with U0126 was observed for changes in VEGF secretion. RESULTS: Phos-ERK1/2 was expressed on Müller cells early in diabetes. In vitro high glucose stimulation of Müller cells increased VEGF secretion with a peak at 24 hours. An ERK1/2 specific inhibitor, U0126, stopped the phosphorylation of ERK1/2, lowered AP-1 DNA binding activity, and reduced Müller cells secretion of VEGF under high glucose conditions. CONCLUSIONS: ERK1/2 signaling pathway has some role in regulating Müller cells secretion of VEGF in DR. Targeting the ERK1/2 signaling pathway in Müller cells through intervention of the upstream signaling pathway or nuclear transcription factors of VEGF secretion could be a type of anti-VEGF treatment for DR.[Abstract] [Full Text] [Related] [New Search]