These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: pH optimum of the photosystem II H₂O oxidation reaction: effects of PsbO, the manganese-stabilizing protein, Cl- retention, and deprotonation of a component required for O₂ evolution activity.
    Author: Commet A, Boswell N, Yocum CF, Popelka H.
    Journal: Biochemistry; 2012 May 08; 51(18):3808-18. PubMed ID: 22512418.
    Abstract:
    Hydroxide ion inhibits Photosystem II (PSII) activity by extracting Cl(-) from its binding site in the O(2)-evolving complex (OEC) under continuous illumination [Critchley, C., et al. (1982) Biochim. Biophys. Acta 682, 436]. The experiments reported here examine whether two subunits of PsbO, the manganese-stabilizing protein, bound to eukaryotic PSII play a role in protecting the OEC against OH(-) inhibition. The data show that the PSII binding properties of PsbO affect the pH optimum for O(2) evolution activity as well as the Cl(-) affinity of the OEC that decreases with an increasing pH. These results suggest that PsbO functions as a barrier against inhibition of the OEC by OH(-). Through facilitation of efficient retention of Cl(-) in PSII [Popelkova, H., et al. (2008) Biochemistry 47, 12593], PsbO influences the ability of Cl(-) to resist OH(-)-induced release from its site in the OEC. Preventing inhibition by OH(-) allows for normal (short) lifetimes of the S(2) and S(3) states in darkness [Roose, J. L., et al. (2011) Biochemistry 50, 5988] and for maximal steady-state activity by PSII. The data presented here indicate that activation of H(2)O oxidation occurs with a pK(a) of ∼6.5, which could be a function of deprotonation of one or more amino acid residues that reside near the OEC active site on the D1 and CP43 intrinsic subunits of the PSII reaction center.
    [Abstract] [Full Text] [Related] [New Search]