These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, candida albicans and Aspergillus flavus. Author: Padhiar J, Das A, Bhattacharya S. Journal: Pak J Biol Sci; 2011 Nov 15; 14(22):1011-8. PubMed ID: 22514878. Abstract: The present study was aimed at optimization, production and partial purification of lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Various nutritional and physical parameters affecting lipase production such as carbon and nitrogen supplements, pH, temperature, agitation speed and incubation time were studied. Refined sunflower oil (1% v/v) and tryptone at a pH of 6.2 favored maximum lipase production in Pseudomonas at 30 degrees C and 150 rpm, when incubated for 5 days. In C. albicans refined sunflower oil (3% v/v) and peptone resulted in maximum lipase production at pH 5.2, 30 degrees C and 150 rpm, when incubated for 5 days. In A. flavus coconut oil (3% v/v) and peptone yielded maximum lipase at pH 6.2, 37 degrees C, 200 rpm after an incubation period of 5 days. The lipases were partially purified by ammonium sulphate precipitation and dialysis. In P. aeruginosa enzyme activity of the dialyzed fraction was found to be 400 U mL-' and for C. albicans 410 U mL(-1). The dialysed lipase fraction from A. flavus demonstrated an activity of 460 U mL(-1). The apparent molecular weights of the dialyzed lipases were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The dialyzed lipase fraction obtained from P. aeruginosa revealed molecular weights of 47, 49 and 51 kDa, whereas, lipases from C. albicans and A. flavus demonstrated 3 bands (16.5, 27 and 51 kDa) and one band (47 kDa), respectively. These extracellular lipases may find wide industrial applications.[Abstract] [Full Text] [Related] [New Search]