These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique.
    Author: Xiong T, Li Y, Ni F, Zhang F.
    Journal: J Biomed Nanotechnol; 2012 Feb; 8(1):74-9. PubMed ID: 22515095.
    Abstract:
    Cytotoxic gene therapy mediated by gene transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene followed by acyclovir (ACV) treatment has been reported to inhibit malignant tumor growth in a variety of studies. The magnitude of "bystander effect" is an essential factor for this anti-tumor approach in vivo. However, the mechanism by which HSV-tk/ACV brings "bystander effect" is poorly understood. In this report, the plasmid CD3 (ECFP-CRS-DsRed) and TK-GFP were transferred to the human adenoid cystic carcinoma line ACC-M cell line. The CD3-expressing cells apoptosis was monitored using fluorescence resonance energy transfer (FRET) technique. First, CD3 and TK-GFP co-expressing ACC-M cells apoptosis was monitored using FRET technique. The apoptosis was induced by ACV and initiated by caspase3. The FRET efficient was remarkably decreased and then disappeared during cellular apoptosis, which indicated that the TK-GFP expressing ACC-M cells apoptosis, induced by ACV, was via a caspase3-dependent pathway. Secondly, CD3 and TK-GFP mixed expressing ACC-M cells apoptosis, induced by ACV, were monitored using FRET technique. The apoptotic phenomena appeared in the CD3-expressing ACC-M cells. The results show that HSV-tk/ACV system killed ACC-M cells using its bystander effect. These results confirm that HSV-tk/ACV system is potential for cancer gene therapy.
    [Abstract] [Full Text] [Related] [New Search]