These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis.
    Author: El Hadri K, Mahmood DF, Couchie D, Jguirim-Souissi I, Genze F, Diderot V, Syrovets T, Lunov O, Simmet T, Rouis M.
    Journal: Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1445-52. PubMed ID: 22516068.
    Abstract:
    OBJECTIVE: Oxidative stress is believed to play a key role in cardiovascular disorders. Thioredoxin (Trx) is an oxidative stress-limiting protein with anti-inflammatory and antiapoptotic properties. Here, we analyzed whether Trx-1 might exert atheroprotective effects by promoting macrophage differentiation into the M2 anti-inflammatory phenotype. METHODS AND RESULTS: Trx-1 at 1 μg/mL induced downregulation of p16(INK4a) and significantly promoted the polarization of anti-inflammatory M2 macrophages in macrophages exposed to interleukin (IL)-4 at 15 ng/mL or IL-4/IL-13 (10 ng/mL each) in vitro, as evidenced by the expression of the CD206 and IL-10 markers. In addition, Trx-1 induced downregulation of nuclear translocation of activator protein-1 and Ref-1, and significantly reduced the lipopolysaccharide-induced differentiation of inflammatory M1 macrophages, as indicated by the decreased expression of the M1 cytokines, tumor necrosis factor-α and monocyte chemoattractant protein-1. Consistently, Trx-1 administered to hyperlipoproteinemic ApoE2.Ki mice at 30 μg/30 g body weight challenged either with lipopolysaccharide at 30 μg/30 g body weight or with IL-4 at 500 ng/30 g body weight significantly induced the M2 phenotype while inhibiting differentiation of macrophages into the M1 phenotype in liver and thymus. ApoE2.Ki mice challenged once weekly with lipopolysaccharide for 5 weeks developed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. In contrast, however, daily injections of Trx-1 shifted the phenotype pattern of lesional macrophages in these animals to predominantly M2 over M1, and the aortic lesion area was significantly reduced (from 100%±18% to 62.8%±9.8%; n=8; P<0.01). Consistently, Trx-1 colocalized with M2 but not with M1 macrophage markers in human atherosclerotic vessel specimens. CONCLUSIONS: The ability of Trx-1 to promote differentiation of macrophages into an alternative, anti-inflammatory phenotype may explain its protective effects in cardiovascular diseases. These data provide novel insight into the link between oxidative stress and cardiovascular diseases.
    [Abstract] [Full Text] [Related] [New Search]