These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene duplication in the evolution of sexual dimorphism. Author: Wyman MJ, Cutter AD, Rowe L. Journal: Evolution; 2012 May; 66(5):1556-66. PubMed ID: 22519790. Abstract: Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex-specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome-wide level in Drosophila melanogaster, using the presence of sex-biased expression as a proxy for the sex-specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex-biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male-biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male-biased expression. Conversely, female-biased expression is not common among duplicates; fewer duplicate genes are expressed in the female-soma and ovaries than in the male-soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex-biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male-biased, but not female-biased, gene expression, thereby aiding the evolution of sexual dimorphism.[Abstract] [Full Text] [Related] [New Search]