These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary fish oil replacement with canola oil up-regulates glutathione peroxidase 1 gene expression in yellowtail kingfish (Seriola lalandi). Author: Bowyer JN, Rout-Pitt N, Bain PA, Stone DA, Schuller KA. Journal: Comp Biochem Physiol B Biochem Mol Biol; 2012 Aug; 162(4):100-6. PubMed ID: 22521527. Abstract: The marine carnivore yellowtail kingfish (YTK, Seriola lalandi) was fed diets containing 5% residual fish oil (from the dietary fish meal) plus either 20% fish oil (FO), 20% canola oil (CO), 20% poultry oil (PO), 10% fish oil plus 10% canola oil (FO/CO) or 10% fish oil plus 10% poultry oil (FO/PO) and the effects on fish growth and hepatic expression of two glutathione peroxidase (GPx 1 and GPx 4) and two peroxiredoxin (Prx 1 and Prx 4) antioxidant genes were investigated. Partial (50%) replacement of the added dietary fish oil with poultry oil significantly improved fish growth whereas 100% replacement with canola oil significantly depressed fish growth. The fatty acid profiles of the fish fillets generally reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (16:0) and oleic acid (18:1n-9) and apparent selective retention of eicospentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The Prx 1 and 4 genes were expressed at 10- and 100-fold the level of the GPx 4 and 1 genes, respectively, and at one-tenth the level of the highly expressed β-actin reference gene. Dietary fish oil replacement with canola oil significantly up-regulated GPx 1 gene expression and there was a non-significant tendency towards down-regulation of Prx 1 and Prx 4. The results are discussed in terms of the effects of fish oil replacement on the peroxidation index of the diets and the resulting effects on the target antioxidant enzymes.[Abstract] [Full Text] [Related] [New Search]