These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new isoform of thioredoxin h group in potato, SbTRXh1, regulates cold-induced sweetening of potato tubers by adjusting sucrose content. Author: He T, Song B, Liu J, Chen X, Ou Y, Lin Y, Zhang H, Xie C. Journal: Plant Cell Rep; 2012 Aug; 31(8):1463-71. PubMed ID: 22527194. Abstract: UNLABELLED: In order to study the molecular mechanism of the cold-induced sweetening (CIS) of potato tubers, a novel isoform of thioredoxin h group, SbTRXh1, which was up-regulated early in the 4 °C storage of CIS-resistant potato (Solanum berthaultii) tubers, was cloned in present research. The genetic transformation of over-expression (OE) and RNA interference (RNAi) of SbTRXh1 into potato cv. E-Potato 3 (E3) was carried out to clarify its function in CIS regulation. The results showed that the transcripts of SbTRXh1 in either OE- or RNAi-tubers were strongly induced in 4 °C storage and quantitatively related to the reducing sugar (RS) accumulation, indicating that SbTRXh1 is involved in the CIS process of potato tubers. Regression analysis between the transcripts and protein contents of SbTRXh1 showed a very significant logarithmic relationship implying that the expression of SbTRXh1 may be mainly regulated at transcriptional level. Further monitoring the variation of the sugar contents in cold-stored tubers demonstrated a linear relationship between RS and sucrose (Suc). Thus, it can be inferred that SbTRXh1 may function in the Suc-RS pathway for CIS regulation of potato tubers. KEY MESSAGE: SbTRXh1 is primarily demonstrated to be involved in the regulation of cold-induced sweetening (CIS) of potato tubers, and it may function in the Suc-RS pathway for CIS regulation.[Abstract] [Full Text] [Related] [New Search]