These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G.
    Author: Watharkar AD, Khandare RV, Kamble AA, Mulla AY, Govindwar SP, Jadhav JP.
    Journal: Environ Sci Pollut Res Int; 2013 Feb; 20(2):939-49. PubMed ID: 22529004.
    Abstract:
    Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent. In vitro cultures of P. grandiflora were obtained by seed culture method. The decolorization experiments were carried out using wild as well as tissue-cultured plants independently. The enzymatic analysis of the plant roots was performed before and after decolorization of BBG. Metabolites formed after dye degradation were analyzed using UV-vis spectroscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Phytotoxicity studies were performed. Characterization of dye mixture and textile effluent was also studied. The wild and tissue-cultured plants of P. grandiflora showed the decolorized BBG up to 86 %. Significant increase in the activities of lignin peroxidase, laccase, NADH-2,6-dichlorophenol-indophenol reductase, and tyrosinase was found in the roots of the plants. Three metabolites of BBG were identified as 3-{[ethyl(phenyl)amino]methyl}benzenesulfonic acid, 3-{[methyl (phenyl)amino]methyl}benzenesulfonic amino acid, and sodium-3-[(cyclohexa-2,5-dien-1-ylideneamino)methyl]benzenesulfonate. Textile effluent sample and a synthetic mixture of dyes were also decolorized by P. grandiflora. Phytotoxicity test revealed the nontoxic nature of metabolites. P. grandiflora showed the potential to decolorize and degrade BBG to nontoxic metabolites. The plant has efficiently treated a sample of dye mixture and textile effluent.
    [Abstract] [Full Text] [Related] [New Search]