These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of ozone on the biodegradation of 17α-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures. Author: Larcher S, Yargeau V. Journal: Appl Microbiol Biotechnol; 2013 Mar; 97(5):2201-10. PubMed ID: 22534821. Abstract: The potential development of antibacterial resistance and endocrine disruption has led to increased research investigating the removal of contaminants from wastewater (WW) such as sulfamethoxazole (SMX) and 17α-ethinylestradiol (EE2). These compounds react quickly with ozone (O(3)), thus ozonation during WW treatment may result in their complete removal. Also, O(3) has demonstrated the ability to increase the biodegradability of WW and certain pharmaceuticals, suggesting its potential as a pretreatment to activated sludge (AS, biological treatment). The objective of this study was to determine whether ozonation, conducted at doses lower than commonly applied to treated WW, would lead to an increased biodegradability of SMX and EE2. The results show that after ozonation performed at lab-scale the bacterial mixtures removed 5 % to 40 % more SMX; however, 2 % to 23 % less EE2 was removed, which was attributed to the observed preferential degradation of a by-product of EE2 ozonation. These results suggest that although ozonation, used as a pretreatment, was shown in literature to increase the overall biodegradability of AS as well as some specific antibiotic compounds and a blood lipid regulator, the potential for increased removal of pharmaceuticals seems to be compound-dependent and cannot yet be extrapolated to this entire class of compounds.[Abstract] [Full Text] [Related] [New Search]