These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors. Author: Szathmari A, Champier J, Ghersi-Egea JF, Jouvet A, Watrin C, Wierinckx A, Fèvre Montange M. Journal: Neuropathology; 2013 Feb; 33(1):17-29. PubMed ID: 22537279. Abstract: Circumventricular organs (CVOs) are specialized ventricular structures around the third and fourth ventricles of the brain. In humans, these structures are present during the fetal period and some become vestigial after birth. Some of these organs, such as the pineal gland (PG), subcommissural organ (SCO), and organum vasculosum of the lamina terminalis, might be the sites of origin of periventricular tumors, notably pineal parenchymal tumors, papillary tumor of the pineal region and chordoid glioma. In contrast to the situation in humans, CVOs are present in the adult rat and can be dissected by laser capture microdissection (LCM). In this study, we used LCM and microarrays to analyze the transcriptomes of three CVOs, the SCO, the subfornical organ (SFO), and the PG and the third ventricle ependyma in the adult rat, in order to better characterize these organs at the molecular level. Several genes were expressed only, or mainly, in one of these structures, for example, Erbb2 and Col11a1 in the ependyma, Epcam and Claudin-3 (CLDN3) in the SCO, Ren1 and Slc22a3 in the SFO and Tph, Aanat and Asmt in the PG. The expression of these genes in periventricular tumors should be examined as evidence for a possible origin from the CVOs. Furthermore, we performed an immunohistochemical study of CLDN3, a membrane protein involved in forming cellular tight junctions and found that CLDN3 expression was restricted to the apical pole of ependymocytes in the SCO. This microarray study provides new evidence regarding the possible origin of some rare periventricular tumors.[Abstract] [Full Text] [Related] [New Search]