These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A chemometric approach for the elucidation of the parameter impact in the hyphenation of field-enhanced sample injection and sweeping in capillary electrophoresis. Author: Anres P, Delaunay N, Vial J, Gareil P. Journal: Electrophoresis; 2012 Apr; 33(7):1169-81. PubMed ID: 22539320. Abstract: The aim of this work was to elucidate the impacts of parameters influencing cation-selective exhaustive injection coupled to sweeping and micellar electrokinetic chromatography (MEKC). A chemometric approach using cationic compounds, acidic conditions (phosphate buffer, pH 2.3) and polyacrylamide-coated capillaries to suppress electroosmotic flow were used. It was demonstrated that the water plug was not useful because of long electrokinetic injections. If conductivity of the high conductivity buffer (HCB) and the HCB to sample conductivity ratio are sufficiently high (>1.66 S/m and >30, respectively), variations of HCB conductivity do not impact sensitivity. The length of the HCB must be long enough so that the most mobile cation remains stacked in this zone for a given injection time. SDS concentration should be as high as possible (the maximum concentration is dictated by MEKC, here 90 mM), so sensitivity is not impacted. We have shown analytes can be lost after electrokinetic injection, when the polarity of the voltage is reversed. Introducing a plug of micellar electrolyte before polarity reversal avoids these losses. Following these recommendations only injection time and sample conductivity impacted sensitivity enhancement. Sample conductivity had to be the lowest as possible and controlled in real case analyses to obtain repeatable enrichment factors.[Abstract] [Full Text] [Related] [New Search]