These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The protective of hydrogen on stress-induced gastric ulceration. Author: Liu X, Chen Z, Mao N, Xie Y. Journal: Int Immunopharmacol; 2012 Jun; 13(2):197-203. PubMed ID: 22543062. Abstract: Stress ulceration frequently occurs as a result of major stressful events and hydroxyl radical (⋅OH) is one of the major causative factors for it. Recently, it has been proved that hydrogen, a potent selectively ⋅OH scavenger, can effectively protect animals against ROS-induced tissue damage. In like manner, we hypothesize that hydrogen may have a protective effect against stress ulceration. Gastric ulceration was induced by the method of cold restraint stress. Rats in the hydrogen treatment group received hydrogen-rich saline (10 mL/kg body weight) 5 min before the stress. At 6h post-stress, gastric corpus mucosa was harvested for the measurement of malondialdehyde, protein carbonyl, 8-hydroxy-desoxyguanosine, glutathione, superoxide dismutase, myeloperoxidase, TNF-α, IL-1β and cytokine-induced neutrophils chemoattractant-1. In addition, western blotting was used to determine the expression of p38 MAPK, P-p38 MAPK, P-JNk, JNK, Bcl-xl, Bax and cleaved caspase-3. Nuclear translocation of NF-κB was assessed by electrophoretic mobility shift assay. Gastric mucosa structure and mucosal epithelial cells apoptosis were measured at 12h post-stress. Our present study showed that hydrogen treatment lessened the stress-induced lipid peroxidation, protein carbonyl and DNA oxidant and improved tissue antioxidant potential. In addition, hydrogen mitigated inflammatory response and neutrophils infiltration with suppressing the activity of P-p38 MAPK, P-JNk and NF-κB. Importantly, hydrogen ameliorated gastric mucosa damage with preventing cell apoptosis. Furthermore, the up-regulation of cleaved caspase-3, Bax and down-regulation of Bcl-xl expression were blocked by hydrogen treatment. In conclusion, hydrogen treatment effectively ameliorated stress-associated gastric mucosa damage via its anti-oxidant, anti-inflammatory and anti-apoptotic effects.[Abstract] [Full Text] [Related] [New Search]