These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of working memory load on processing of sounds and meanings of words in aphasia.
    Author: Martin N, Kohen F, Kalinyak-Fliszar M, Soveri A, Laine M.
    Journal: Aphasiology; 2012 Mar; 26(3-4):462-493. PubMed ID: 22544993.
    Abstract:
    BACKGROUND: Language performance in aphasia can vary depending on several variables such as stimulus characteristics and task demands. This study focuses on the degree of verbal working memory (WM) load inherent in the language task and how this variable affects language performance by individuals with aphasia. AIMS: The first aim was to identify the effects of increased verbal WM load on the performance of judgments of semantic similarity (synonymy) and phonological similarity (rhyming). The second aim was to determine if any of the following abilities could modulate the verbal WM load effect: semantic or phonological access, semantic or phonological short-term memory (STM) and any of the following executive processing abilities: inhibition, verbal WM updating, and set shifting. METHOD AND PROCEDURES: Thirty-one individuals with aphasia and 11 controls participated in this study. They were administered a synonymy judgment task and a rhyming judgment task under high and low verbal WM load conditions that were compared to each other. In a second set of analyses, multiple regression was used to identify which factors (as noted above) modulated the verbal WM load effect. OUTCOME AND RESULTS: For participants with aphasia, increased verbal WM load significantly reduced accuracy of performance on synonymy and rhyming judgments. Better performance in the low verbal WM load conditions was evident even after correcting for chance. The synonymy task included concrete and abstract word triplets. When these were examined separately, the verbal WM load effect was significant for the abstract words, but not the concrete words. The same pattern was observed in the performance of the control participants. Additionally, the second set of analyses revealed that semantic STM and one executive function, inhibition ability, emerged as the strongest predictors of the verbal WM load effect in these judgment tasks for individuals with aphasia. CONCLUSIONS: The results of this study have important implications for diagnosis and treatment of aphasia. As the roles of verbal STM capacity, executive functions and verbal WM load in language processing are better understood, measurements of these variables can be incorporated into our diagnostic protocols. Moreover, if cognitive abilities such as STM and executive functions support language processing and their impairment adversely affects language function, treating them directly in the context of language tasks should translate into improved language function.
    [Abstract] [Full Text] [Related] [New Search]