These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Few electron limit of n-type metal oxide semiconductor single electron transistors.
    Author: Prati E, De Michielis M, Belli M, Cocco S, Fanciulli M, Kotekar-Patil D, Ruoff M, Kern DP, Wharam DA, Verduijn J, Tettamanzi GC, Rogge S, Roche B, Wacquez R, Jehl X, Vinet M, Sanquer M.
    Journal: Nanotechnology; 2012 Jun 01; 23(21):215204. PubMed ID: 22552118.
    Abstract:
    We report the electronic transport on n-type silicon single electron transistors (SETs) fabricated in complementary metal oxide semiconductor (CMOS) technology. The n-type metal oxide silicon SETs (n-MOSSETs) are built within a pre-industrial fully depleted silicon on insulator (FDSOI) technology with a silicon thickness down to 10 nm on 200 mm wafers. The nominal channel size of 20 × 20 nm(2) is obtained by employing electron beam lithography for active and gate level patterning. The Coulomb blockade stability diagram is precisely resolved at 4.2 K and it exhibits large addition energies of tens of meV. The confinement of the electrons in the quantum dot has been modeled by using a current spin density functional theory (CS-DFT) method. CMOS technology enables massive production of SETs for ultimate nanoelectronic and quantum variable based devices.
    [Abstract] [Full Text] [Related] [New Search]