These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-κB and inhibiting mitogen-activated protein kinases.
    Author: Park HY, Kim GY, Choi YH.
    Journal: Int J Mol Med; 2012 Jul; 30(1):204-10. PubMed ID: 22552813.
    Abstract:
    Naringenin, one of the most abundant flavonoids in citrus fruits and grapefruits, has been reported to exhibit anti-inflammatory and antitumor activities. However, the cellular and molecular mechanisms underlying the naringenin anti-inflammatory activity are poorly understood. In this study, we conducted an investigation of the inhibitory effects of naringenin on the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators in BV2 microglial cells. We found that pre-treatment with naringenin prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E2 (PGE2) in a dose-dependent manner. The inhibition was associated with downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Naringenin also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) by suppressing expression of mRNAs for these proteins. In addition, the molecular mechanism underlying naringenin-mediated attenuation in BV2 cells has a close relationship to suppressing translocation of the nuclear factor-κB (NF-κB) p65 subunit into the nucleus and the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs). These findings suggest that naringenin may provide neuroprotection through suppression of pro-inflammatory pathways in activated BV2 microglial cells.
    [Abstract] [Full Text] [Related] [New Search]