These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ferrocene-decorated (phthalocyaninato)(porphyrinato) double- and triple-decker rare earth complexes: synthesis, structure, and electrochemical properties. Author: Zhu P, Zhang X, Wang H, Zhang Y, Bian Y, Jiang J. Journal: Inorg Chem; 2012 May 21; 51(10):5651-9. PubMed ID: 22554027. Abstract: A series of four mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes (Pc)M[Por(Fc)(2)] [Pc = phthalocyaninate; Por(Fc)(2) = 5,15-di(ferrocenyl)-porphyrinate; M = Eu (1), Y (2), Ho (3), Lu (4)] and their europium(III) triple-decker counterpart (Pc)Eu(Pc)Eu[Por(Fc)(2)] (5), each with two ferrocenyl units at the meso-positions of their porphyrin ligands, have been designed and prepared. The double- and triple-decker complexes 1-5 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of two double-deckers 1 and 4 were also determined by single-crystal X-ray diffraction analysis. Electrochemical studies of these novel sandwich complexes revealed two consecutive ferrocene-based one-electron oxidation waves, suggesting the effective electronic coupling between the two ferrocenyl units. Nevertheless, the separation between the two consecutive ferrocene-based oxidation waves increases from 1 to 4, along with the decrease of rare earth ionic radius, indicating the effect of rare earth size on tuning the coupling between the two ferrocenyl units. Furthermore, the splitting between the two ferrocene-based one-electron oxidations for triple-decker 5 is even smaller than that for 1, showing that the electronic interaction between the two ferrocene centers can also be tuned through changing the linking sandwich framework from double-decker to triple-decker. For further understanding of the electronic coupling between ferrocenyl groups, DFT calculation is carried out to clarify the electronic delocalization and the molecular orbital distribution in these double-decker complexes.[Abstract] [Full Text] [Related] [New Search]