These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular evidence indicates that subarctic willow communities in Scotland support a diversity of host-associated Melampsora rust taxa. Author: Milne JM, Helfer S, Kirk C, Hollingsworth PM, Ennos RA. Journal: Fungal Biol; 2012 May; 116(5):603-12. PubMed ID: 22559920. Abstract: Rare and threatened subarctic willow scrub communities in the UK are the subject of ongoing conservation programmes, yet little is known about the diversity of fungal taxa that they support. Isolates of the rust genus Melampsora were sampled from 112 leaves of eight subarctic willow (Salix) taxa and their hybrids from twelve sites in the UK. In order to determine the number of Melampsora taxa present in the samples, isolates were sequenced for the Internal Transcribed Spacer (ITS) region of rDNA and data were subject to phylogenetic analysis. Maximum likelihood and Bayesian analysis indicated that the isolates fell into three strongly supported host-associated clades. Clade I contained only isolates from Salix herbacea and was distinguished morphologically by dense urediniospore echinulation and thin cell walls. Clade II contained isolates from Salix arbuscula and Salix reticulata only. These could not be distinguished morphologically from isolates in Clade III which were found on Salix lapponum, Salix myrsinites, Salix myrsinifolia, Salix aurita, Salix lanata, and their hybrids. Clade II was most distinct in ITS sequence, differing by 50 bases from Clades I and III, while the latter clades differed in sequence by only 24 bases on average. Clades I and III are likely to represent the previously recognised taxa Melampsora alpina Juel 1894 and Melampsora epitea Thüm. 1879 respectively, but Clade II has not apparently been described before. Significant differences in the intensity of infection by isolates of Clade III were found among different Salix species at a single site, suggesting either differences in resistance among Salix taxa, or the presence of further cryptic taxa within Clade III. The study illustrates the power of molecular phylogenetic analysis to reveal cryptic biodiversity within Melampsora, and suggests that conserving Salix host diversity within subarctic willow communities will ensure that a diversity of associated Melampsora taxa is maintained.[Abstract] [Full Text] [Related] [New Search]