These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of nitrogen dioxide and anoxia on global gene and protein expression in long-term continuous cultures of Nitrosomonas eutropha C91. Author: Kartal B, Wessels HJ, van der Biezen E, Francoijs KJ, Jetten MS, Klotz MG, Stein LY. Journal: Appl Environ Microbiol; 2012 Jul; 78(14):4788-94. PubMed ID: 22562996. Abstract: Nitrosomonas eutropha is an ammonia-oxidizing betaproteobacterium found in environments with high ammonium levels, such as wastewater treatment plants. The effects of NO(2) on gene and protein expression under oxic and anoxic conditions were determined by maintaining N. eutropha strain C91 in a chemostat fed with ammonium under oxic, oxic-plus-NO(2), and anoxic-plus-NO(2) culture conditions. Cells remained viable but ceased growing under anoxia; hence, the chemostat was switched from continuous to batch cultivation to retain biomass. After several weeks under each condition, biomass was harvested for total mRNA and protein isolation. Exposure of N. eutropha C91 to NO(2) under either oxic or anoxic conditions led to a decrease in proteins involved in N and C assimilation and storage and an increase in proteins involved in energy conservation, including ammonia monooxygenase (AmoCAB). Exposure to anoxia plus NO(2) resulted in increased representation of proteins and transcripts reflective of an energy-deprived state. Several proteins implicated in N-oxide metabolism were expressed and remained unchanged throughout the experiment, except for NorCB nitric oxide reductase, which was not detected in the proteome. Rather, NorY nitric oxide reductase was expressed under oxic-plus-NO(2) and anoxic-plus-NO(2) conditions. The results indicate that exposure to NO(2) results in an energy-deprived state of N. eutropha C91 and that anaerobic growth could not be supported with NO(2) as an oxidant.[Abstract] [Full Text] [Related] [New Search]