These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking IκB kinaseβ-NF-κB signalling.
    Author: Park SA, Na HK, Surh YJ.
    Journal: Free Radic Res; 2012 Aug; 46(8):1051-7. PubMed ID: 22571807.
    Abstract:
    Excess estrogen stimulates the proliferation of mammary epithelial cells and hence represents a major risk factor for breast cancer. Estrogen is subjected to cytochrome P450-catalysed oxidative metabolism to produce an oncogenic catechol estrogen, 4-hydroxyestradiol (4-OHE₂). 4-OHE₂ undergoes redox cycling during which reactive oxygen species (ROS) as well as the chemically reactive estrogen semiquinone and quinone intermediates are produced, thereby contributing to hormonal carcinogenesis. Resveratrol (3,4',5-trihydroxy stilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the inhibitory effects of resveratrol on 4-OHE₂-induced transformation of human breast epithelial MCF-10A cells. Resveratrol inhibited migration and anchorage-independent growth of MCF-10A cells treated with 4-OHE₂. Resveratrol treatment suppressed the 4-OHE₂-induced activation of IκB kinaseβ (IKKβ) and phosphorylation of IκBα, and consequently NF-κB DNA binding activity and cyclooxygenase-2 (COX-2) expression. Resveratrol suppressed ROS production and phosphorylation of Akt and ERK induced by 4-OHE₂ treatment. In conclusion, resveratrol blocks activation of IKKβ-NF-κB signalling and induction of COX-2 expression in 4-OHE₂-treated MCF-10A cells, thereby suppressing migration and transformation of these cells.
    [Abstract] [Full Text] [Related] [New Search]