These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical and pharmacological development of steroidal inhibitors of aromatase.
    Author: Brueggemeier RW, Li PK, Chen HH, Moh PP, Katlic NE.
    Journal: J Steroid Biochem Mol Biol; 1990 Nov 20; 37(3):379-85. PubMed ID: 2257241.
    Abstract:
    Androstenedione analogs containing 7 alpha-substituents have proven to be potent inhibitors of aromatase both in vitro and in vivo. Several of these agents have exhibited higher affinity for the enzyme complex than the substrate. In order to examine further the interaction(s) of 7-substituted steroids with aromatase, biochemical and pharmacological studies were performed on 7 alpha-thiosubstituted androstenediones and 7-substituted 4,6-androstadiene-3,17-diones. Potent inhibition of aromatase activity in human placental microsomes has been observed with several new 7 alpha-thiosubstituted androstenediones. 7-Benzyl- and 7-phenethyl-4,6-androstadiene-3,17-diones effectively inhibited microsomal aromatase, with apparent Kis ranging from 61 to 174 nM. On the other hand, 7-phenyl-4,6-androstadiene-3,17-dione exhibited poor activity, with an apparent Ki of 1.42 microM. Similar inhibitory activity was observed with reconstituted, purified cytochrome P450Arom preparations. Additionally, these agents were evaluated for inhibition of aromatase activity in two human carcinoma cell lines, the MCF-7 human mammary cancer line and the JAr choriocarcinoma line. The 7 alpha-thiosubstituted androstenediones and 7-substituted 4,6-androstadiene-3,17-diones produced dose-dependent inhibitions of aromatase activity in the cell cultures. The most effective inhibitors were the 7 alpha-substituted androstenediones, with EC50 values ranging from 7.3 to 105 nM. Finally, the JAr cell culture system exhibited prolonged inhibition of aromatase activity following exposure to 7 alpha-APTADD, suggesting enzyme inactivation by this inhibitor. Thus, these agents are effective aromatase inhibitors, and the results encourage further development of this group of medicinal agents for the treatment of estrogen-dependent mammary carcinoma.
    [Abstract] [Full Text] [Related] [New Search]