These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron paramagnetic resonance and Mössbauer spectroscopy and density functional theory analysis of a high-spin Fe(IV)-oxo complex. Author: Gupta R, Lacy DC, Bominaar EL, Borovik AS, Hendrich MP. Journal: J Am Chem Soc; 2012 Jun 13; 134(23):9775-84. PubMed ID: 22574962. Abstract: High-spin Fe(IV)-oxo species are known to be kinetically competent oxidants in non-heme iron enzymes. The properties of these oxidants are not as well understood as the corresponding intermediate-spin oxidants of heme complexes. The present work gives a detailed characterization of the structurally similar complexes [Fe(IV)H(3)buea(O)](-), [Fe(III)H(3)buea(O)](2-), and [Fe(III)H(3)buea(OH)](-) (H(3)buea = tris[(N'-tert-butylureaylato)-N-ethylene]aminato) using Mössbauer and dual-frequency/dual-mode electron paramagnetic resonance (EPR) spectroscopies. The [Fe(IV)H(3)buea(O)](-) complex has a high-spin (S = 2) configuration imposed by the C(3)-symmetric ligand. The EPR spectra of the [Fe(IV)H(3)buea(O)](-) complex presented here represent the first documented examples of an EPR signal from an Fe(IV)-oxo complex, demonstrating the ability to detect and quantify Fe(IV) species with EPR spectroscopy. Quantitative simulations allowed the determination of the zero-field parameter, D = +4.7 cm(-1), and the species concentration. Density functional theory (DFT) calculations of the zero-field parameter were found to be in agreement with the experimental value and indicated that the major contribution to the D value is from spin-orbit coupling of the ground state with an excited S = 1 electronic configuration at 1.2 eV. (17)O isotope enrichment experiments allowed the determination of the hyperfine constants ((17)O)A(z) = 10 MHz for [Fe(IV)H(3)buea(O)](-) and ((17)O)A(y) = 8 MHz, ((17)O)A(z) = 12 MHz for [Fe(III)H(3)buea(OH)](-). The isotropic hyperfine constant (((17)O)A(iso) = -16.8 MHz) was derived from the experimental value to allow a quantitative determination of the spin polarization (ρ(p) = 0.56) of the oxo p orbitals of the Fe-oxo bond in [Fe(IV)H(3)buea(O)](-). This is the first experimental determination for non-heme complexes and indicates significant covalency in the Fe-oxo bond. High-field Mössbauer spectroscopy gave an (57)Fe A(dip) tensor of (+5.6, +5.3, -10.9) MHz and A(iso) = -25.9 MHz for the [Fe(IV)H(3)buea(O)](-) complex, and the results of DFT calculations were in agreement with the nuclear parameters of the complex.[Abstract] [Full Text] [Related] [New Search]