These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationships between cold hardiness, and ice nucleating activity, glycerol and protein contents in the hemolymph of caterpillars, Aporia crataegi L.
    Author: Li NG.
    Journal: Cryo Letters; 2012; 33(2):135-43. PubMed ID: 22576117.
    Abstract:
    Insects in Siberia must tolerate some of the coldest conditions on earth. The relationship between hemolymph ice nucleating activity, glycerol and total protein concentrations, and cold hardiness was explored in Aporia crataegi L. (Lepidoptera: Pieridae). Cold-hardened overwintering caterpillars were collected at a time of year when temperatures are regularly below -50 degree C, and warm-acclimated at +22 degree C, to see how changes in the physical and chemical properties of the hemolymph influence their cold hardiness potential. Warm acclimation led to a decrease in glycerol and proteins content in the hemolymph, which was associated with the decrease in ice nucleating activity and dramatic loss of cold hardiness potential of the caterpillars. It is suggested that one of the effects of cryoprotection in the freeze tolerant insects, caused by glycerol, might be associated with its ability to form larger aggregates of ice nucleating polypeptides that initiate the ice nucleation at high subzero temperatures. Such ice nucleating structures seem to ensure a high probability of ice nucleation at relatively high temperatures, which may contribute to the extraordinary cold hardiness of A. crataegi caterpillars, which may tolerate temperatures below -85 degree С.
    [Abstract] [Full Text] [Related] [New Search]