These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential association of membrane-bound and non-membrane-bound polysomes with the cytoskeleton. Author: Zambetti G, Wilming L, Fey EG, Penman S, Stein J, Stein G. Journal: Exp Cell Res; 1990 Dec; 191(2):246-55. PubMed ID: 2257879. Abstract: We report here a differential release of specific mRNAs from the cytoskeleton by cytochalasin D treatment. Non-membrane-bound polysomal mRNAs, such as histone mRNA and c-fos mRNA, are readily released from the cytoskeleton of HeLa cells during cytochalasin D treatment. Over 90% of H3 and H4 histone mRNA is associated with the cytoskeleton in control cells and only 25% in cells treated with cytochalasin D (40 micrograms/ml). In contrast, the membrane-bound polysomal mRNAs for HLA-B7 and chorionic gonadotropin-alpha are inefficiently released from the cytoskeletal framework by cytochalasin D alone; approximately 98% of the HLA-B7 mRNA in control cells is associated with the cytoskeleton, whereas approximately 65% of the HLA-B7 mRNA is retained on the cytoskeleton in cells treated with cytochalasin D (40 micrograms/ml). Disruption of polysome structure with puromycin during cytochalasin D treatment results in the efficient release of HLA-B7 mRNA from the cytoskeleton. Under these conditions, only 25% of the HLA-B7 mRNA remains associated with the cytoskeletal framework. Thus, membrane-bound polysomes appear to be attached to the cytoskeleton through a cytochalasin D-sensitive site as well as through association with the nascent polypeptide and/or ribosome. These results demonstrate a complex association of polysomes with the cytoskeleton and elements of the endoplasmic reticulum.[Abstract] [Full Text] [Related] [New Search]