These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PPARγ inhibits inflammation and RANKL expression in epoxy resin-based sealer-induced osteoblast precursor cells E1 cells.
    Author: Kim TG, Lee YH, Bhattari G, Lee NH, Lee KW, Yi HK, Yu MK.
    Journal: Arch Oral Biol; 2013 Jan; 58(1):28-34. PubMed ID: 22591774.
    Abstract:
    OBJECTIVES: The AH26 of epoxy resin-based sealer is used widely owing to its excellent physical characteristics but it induces oxidative stress and cytotoxicity at the periapical tissues. AH26 exhibited cytotoxicity towards MC-3T3-E1 cells, which resulted in mitochondria-mediated apoptosis. Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammatory effect in several tissue and cells, but its action of AH26-related inflammation is not completely understood. The aim of this study is to investigate the anti-inflammatory and anti-osteoclastic mechanisms of PPARγ in AH26-induced MC-3T3 E1 cells. METHODS: AH26 was prepared according to the manufacturer's instructions. The 1-day extraction sample, which was diluted by 30%, was tested in this experiment. Recombinant deficiency adenoviral PPARγ (Ad/PPARγ) was used to examine PPARγ over-expression in MC-3T3 E1 cells. AH26-induced reactive oxygen species (ROS) formation was analysed using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) with fluorescence-activated cell sorting (FACS), and the expression of receptor activator of nuclear factor-κB ligand (RANKL) and inflammatory molecules was determined by immunoblotting. The anti-inflammatory and anti-osteoclastic mechanisms of the PPARγ-involved signal pathway was examined by immunoblotting. RESULTS: The AH26 elutes induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), RANKL expression and ROS formation. In addition, the AH26 elutes suppressed the expression of PPARγ. However, the recovery of PPARγ expression with Ad/PPARγ resulted in the inhibition of iNOS, COX-2, RANKL and ROS formation despite the AH26 treatment in MC-3T3 E1 cells. The mechanism of PPARγ was confirmed by the blocking of nuclear factor kappa B (NF-κB) translocation to the nucleus after the suppression of ERK1/2, SAPK/JNK and AP-1 in AH26-induced MC-3T3 E1 cells. CONCLUSION: From this result, PPARγ acts to inhibit bone destruction in AH26-induced bone cells. Therefore, the anti-inflammatory and anti-osteoclastic character of PPARγ might be applicable for healing periapical lesions more rapidly or reducing the induction of cellular inflammation caused by some endodontic sealers.
    [Abstract] [Full Text] [Related] [New Search]