These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Safrole induces G0/G1 phase arrest via inhibition of cyclin E and provokes apoptosis through endoplasmic reticulum stress and mitochondrion-dependent pathways in human leukemia HL-60 cells. Author: Yu CS, Huang AC, Yang JS, Yu CC, Lin CC, Chung HK, Huang YP, Chueh FS, Chung JG. Journal: Anticancer Res; 2012 May; 32(5):1671-9. PubMed ID: 22593445. Abstract: Safrole, a component of Piper betle inflorescence, is a carcinogen which has been demonstrated to induce apoptosis on human oral cancer HSC-3 cells in vitro and to inhibit HSC-3 cells in xenograft tumor cells in vivo. In our previous study, safrole promoted phagocytosis by macrophages and natural killer cell cytotoxicity in normal BALB/c mice. The cytotoxic effects of safrole on HL-60 cells were investigated by using flow cytometric analysis, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, western blotting and confocal laser microscopy. The obtained results indicate that safrole induced a cytotoxic response through reducing the percentage of viable cells and induction of apoptosis in HL-60 cells in a dose-dependent manner. DAPI staining and comet assay also showed that safrole induced apoptosis (chromatin condensation) and DNA damage in HL-60 cells. The flow cytometric assay showed that safrole increased the production of reactive oxygen species (ROS) and Ca(2+) and reduced the mitochondrial membrane potential in HL-60 cells. Safrole enhanced the levels of the pro-apoptotic protein BAX, inhibited those of the anti-apoptotic protein BCL-2 and promoted the levels of apoptosis-inducing factor (AIF) and endonuclease G (Endo G) in HL-60 cells. Furthermore, safrole promoted the expression of glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and of activating transcription factor 6α (ATF-6α). Based on these findings, we suggest that safrole-induced apoptosis in HL-60 cells is mediated through the ER stress and intrinsic signaling pathways.[Abstract] [Full Text] [Related] [New Search]