These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly.
    Author: Gomez-Ferreria MA, Bashkurov M, Helbig AO, Larsen B, Pawson T, Gingras AC, Pelletier L.
    Journal: J Cell Sci; 2012 Aug 15; 125(Pt 16):3745-51. PubMed ID: 22595525.
    Abstract:
    During cell division, microtubules organize a bipolar spindle to drive accurate chromosome segregation to daughter cells. Microtubules are nucleated by the γ-TuRC, a γ-tubulin complex that acts as a template for microtubules with 13 protofilaments. Cells lacking γ-TuRC core components do nucleate microtubules; however, these polymers fail to form bipolar spindles. NEDD1 is a γ-TuRC-interacting protein whose depletion, although not affecting γ-TuRC stability, causes spindle defects similar to the inhibition of its core subunits, including γ-tubulin. Several residues of NEDD1 are phosphorylated in mitosis. However, previously identified phosphorylation sites only partially regulate NEDD1 function, as NEDD1 depletion has a much stronger phenotype than mutation of these residues. Using mass spectrometry, we have identified multiple novel phosphorylated sites in the serine (S)557-S574 region of NEDD1, close to its γ-tubulin-binding domain. Serine to alanine mutations in S565-S574 inhibit the binding of NEDD1 to γ-tubulin and perturb NEDD1 mitotic function, yielding microtubule organization defects equivalent to those observed in NEDD1-depleted cells. Interestingly, additional mutations in the S557-T560 region restore the capacity of NEDD1 to bind γ-tubulin and promote bipolar spindle assembly. All together, our data suggest that the NEDD1/γ-tubulin interaction is finely tuned by multiple phosphorylation events in the S557-S574 region and is critical for spindle assembly. We also found that CEP192, a centrosomal protein similarly required for spindle formation, associates with NEDD1 and modulates its mitotic phosphorylation. Thus CEP192 may regulate spindle assembly by modulating NEDD1 function.
    [Abstract] [Full Text] [Related] [New Search]