These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of equine joint injury on boundary lubrication of articular cartilage by synovial fluid: role of hyaluronan.
    Author: Antonacci JM, Schmidt TA, Serventi LA, Cai MZ, Shu YL, Schumacher BL, McIlwraith CW, Sah RL.
    Journal: Arthritis Rheum; 2012 Sep; 64(9):2917-26. PubMed ID: 22605527.
    Abstract:
    OBJECTIVE: To compare equine synovial fluid (SF) from injured and control joints for cartilage boundary lubrication function; concentrations of the putative boundary lubricant molecules hyaluronan (HA), proteoglycan 4 (PRG4), and surface-active phospholipids (SAPLs); relationships between lubrication function and composition; and lubrication restoration by addition of HA. METHODS: Equine SF from normal joints, joints with acute injury, and joints with chronic injury were analyzed for boundary lubrication of normal articular cartilage (kinetic friction coefficient [μ(kinetic) ]). Equine SF samples were analyzed for HA, PRG4, and SAPL concentrations and HA molecular weight distribution. The effect of the addition of HA, of different concentrations and molecular weight, on the μ(kinetic) of equine SF samples from normal joints and joints with acute injury was determined. RESULTS: The μ(kinetic) of equine SF from joints with acute injury (0.036) was higher (+39%) than that of equine SF from normal joints (0.026). Compared to normal equine SF, SF from joints with acute injury had a lower HA concentration (-30%) of lower molecular weight forms, higher PRG4 concentration (+83%), and higher SAPL concentration (+144%). Equine SF from joints with chronic injury had μ(kinetic) , PRG4, and SAPL characteristics intermediate to those of equine SF from joints with acute injury and normal equine SF. Regression analysis revealed that the μ(kinetic) value decreased with increasing HA concentration in equine SF. The friction-reducing properties of HA alone improved with increasing concentration and molecular weight. The addition of high molecular weight HA (4,000 kd) to equine SF from joints with acute injury reduced the μ(kinetic) to a value near that of normal equine SF. CONCLUSION: In the acute postinjury stage, equine SF exhibits poor boundary lubrication properties, as indicated by a high μ(kinetic) . HA of diminished concentration and molecular weight may be the basis for this, and adding HA to deficient equine SF restored lubrication function.
    [Abstract] [Full Text] [Related] [New Search]