These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement. Author: Ranjan R, Dey N. Journal: Cell Biochem Biophys; 2012 Jul; 63(3):235-45. PubMed ID: 22610660. Abstract: A Caulimovirus-based hybrid-promoter, EFCFS, was derived by fusing the distal region (-227 to -54, FUAS) of Figwort mosaic virus full-length transcript promoter (F20) with the core promoter (-151 to +12, FS3CP) domain of Figwort mosaic virus sub-genomic transcript promoter (FS3). The hybrid-promoter (EFCFS) showed enhanced activity compared to the CaMV35S, F20 and FS3 promoters; while it showed equivalent activity with that of the CAMV35S(2) promoter in both transient protoplast (Nicotiana tabacum cv. Xanthi Brad) and transgenic plants (Nicotiana tabacum; Samsun NN). Further, we have engineered the EFCFS promoter sequence by inserting additional copies of the stress-inducible 'AAAG' cis-motif (Dof-1) to generate a set of three hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3-containing 10, 11 and 13 'AAAG' motif, respectively. Transgenic plants expressing these hybrid synthetic promoters coupled to the GUS reporter were developed and their transcriptional activities were compared with F20, FS3, 35S and 35S(2) promoters, respectively. The relative levels of uidA-mRNA accumulation in transgenic plants driven by above promoters individually were compared by qRT-PCR. Localization of GUS reporter activity in plant tissue was assayed by histochemical approach. CLSM-based study revealed that hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3 showed enhanced activity in vascular tissue compared to the CaMV35S promoter. In the presence of abiotic stress elicitors, salicylic acid and jasmonic acid, the EFCFS-HS-1 promoters showed enhanced activity compared to the 35S promoter. Newly derived hybrid-synthetic promoter/s with enhanced activity and stress inducibility could become efficient tools for advancement of plant biotechnology.[Abstract] [Full Text] [Related] [New Search]