These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nanoindentation of lemur enamel: an ecological investigation of mechanical property variations within and between sympatric species. Author: Campbell SE, Cuozzo FP, Sauther ML, Sponheimer M, Ferguson VL. Journal: Am J Phys Anthropol; 2012 Jun; 148(2):178-90. PubMed ID: 22610894. Abstract: The common morphological metrics of size, shape, and enamel thickness of teeth are believed to reflect the functional requirements of a primate's diet. However, the mechanical and material properties of enamel also contribute to tooth function, yet are rarely studied. Substantial wear and tooth loss previously documented in Lemur catta at the Beza Mahafaly Special Reserve suggests that their dental morphology, structure, and possibly their enamel are not adapted for their current fallback food (the mechanically challenging tamarind fruit). In this study, we investigate the nanomechanical properties, mineralization, and microstructure of the enamel of three sympatric lemur species to provide insight into their dietary functional adaptations. Mechanical properties measured by nanoindentation were compared to measurements of mineral content, prism orientation, prism size, and enamel thickness using electron microscopy. Mechanical properties of all species were similar near the enamel dentin junction and variations correlated with changes in microstructure (e.g., prism size) and mineral content. Severe wear and microcracking within L. catta's enamel were associated with up to a 43% reduction in nanomechanical properties in regions of cracking versus intact enamel. The mechanical and material properties of L. catta's enamel are similar to those of sympatric folivores and suggest that they are not uniquely mechanically adapted to consume the physically challenging tamarind fruit. An understanding of the material and mechanical properties of enamel is required to fully elucidate the functional and ecological adaptations of primate teeth.[Abstract] [Full Text] [Related] [New Search]