These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Study on bromate formation of catalytic ozonation process].
    Author: Wu L, Yang HW, Yang SX, Lü M, Cheng W.
    Journal: Huan Jing Ke Xue; 2011 Aug; 32(8):2279-83. PubMed ID: 22619950.
    Abstract:
    In a batch reactor, the BrO3(-) formation was investigated in the ozonation and catalytic ozonation of Br(-)-containing Yellow river water, using the different heterogeneous catalysts. The results showed that BrO3(-) minimization was achieved in the catalytic ozonation with NiO, CuO, Fe3O4 and Al2O3 as catalysts and the percent reductions of BrO3(-) were 34.0%, 32.8%, 29.2% and 20.8% respectively. In the reaction R(ct), the ratio of concentration of *OH to O3, decreased with the reaction time, and the range of R(ct) was from 10(-8) to 10(-6). In the ozonation process, one of the main reaction pathways of BrO3(-) formation was the combination oxidation of Br(-) by *OH and then O3, another was the combination oxidation of Br(-) by O3 and then *OH. In the catalytic ozonation with Fe3O4 catalyst, the main pathway was the combination oxidation by *OH and then O3. Moreover, about 60.7% removal for UV254 was obtained after 20 min in the catalytic ozonation reaction. In our study, it was found that the catalytic ozonation process can effectively minimize the formation of BrO3(-) and also oxidize organic compounds.
    [Abstract] [Full Text] [Related] [New Search]