These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amplified quenching of electrochemiluminescence from CdS sensitized TiO2 nanotubes by CdTe-carbon nanotube composite for detection of prostate protein antigen in serum. Author: Tian CY, Zhao WW, Wang J, Xu JJ, Chen HY. Journal: Analyst; 2012 Jul 07; 137(13):3070-5. PubMed ID: 22624149. Abstract: This work reports an ECL immunoassay method for ultrasensitive detection of prostate protein antigen (PSA), by remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from the CdS nanoparticles (NPs) sensitized TiO(2) nanotube array (CdS-TiO(2) NTs) to the activated CdTe NPs functionalized multi-wall carbon nanotubes (CdTe-MWNTs) composite. The coupling of TiO(2) and CdS NPs results in a cathodic ECL intensity 14.7 times stronger than that of the pure TiO(2) NTs electrode, which could be efficiently quenched by the CdTe-MWNTs. The enhanced mechanism of TiO(2) NTs ECL by CdS NPs was studied in detail by cyclic voltammetry and ECL spectroscopy. The strong absorption of the CdTe-MWNTs in the wavelength range of 400-800 nm renders them highly efficient for ECL quenching labeled on anti-PSA antibody. Based on a sandwich structure, we developed an ECL immunoassay method for the sensitive and selective detection of PSA. The ECL intensity decrement was logarithmically related to the concentration of the PSA in the range of 1.0 fg mL(-1) to 10 pg mL(-1) with a detection limit of 1 fg mL(-1). Human serum samples were then tested using the proposed immunoassay with excellent correlations, suggesting that the proposed immunoassay method is of great promise in clinical screening of cancer biomarkers.[Abstract] [Full Text] [Related] [New Search]