These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Daily patterns of mRNA expression of two core circadian regulatory proteins, Clock2 and Per1, and two appetite-regulating peptides, OX and NPY, in goldfish (Carassius auratus). Author: Hoskins LJ, Volkoff H. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2012 Sep; 163(1):127-36. PubMed ID: 22643337. Abstract: The aim of this study was to examine the daily hypothalamic mRNA expression profiles for two core circadian regulatory proteins, CLOCK2 and PER1, and for two neuropeptides that regulate wakefulness and food intake, OX and NPY, in goldfish. The profiles were determined for fish at different nutritional states (i.e. fed or unfed on sampling day) and held at different photoperiods (i.e. 16L:8D photoperiod vs. constant light LL). Our results show that under a 16L:8D photoperiod, both fed and unfed goldfish exhibit clear antiphasic daily rhythms of hypothalamic Clock2 and Per1 mRNA expression levels, whereas under LL, daily Clock2 rhythms are seen in both fed and unfed fish while significant rhythms of Per1 mRNA expression only persist in unfed fish. In fish held under 16L:8D, but not under LL, there was significantly higher Per1 expression in fed fish at feeding time than in unfed fish. Daily variations in hypothalamic OX mRNA expression levels with peaks observed prior to both feeding time and the onset of darkness, were displayed under a 16L:8D photoperiod, whereas exposure to LL resulted in lower expression levels with no significant daily variations. Fish held under LL, but not under 16L:8D, showed significant daily variations in NPY mRNA expression with a peak prior to feeding time. Taken together, our results suggest that the mRNA expression of both appetite-regulating and circadian proteins display daily variations and that these patterns can be affected by external cues such as feeding and photoperiod.[Abstract] [Full Text] [Related] [New Search]