These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal of iopromide and degradation characteristics in electron beam irradiation process. Author: Kwon M, Yoon Y, Cho E, Jung Y, Lee BC, Paeng KJ, Kang JW. Journal: J Hazard Mater; 2012 Aug 15; 227-228():126-34. PubMed ID: 22647234. Abstract: The aim of this study is to evaluate the removal efficiency of iopromide using electron beam (E-beam) irradiation technology, and its degradation characteristics with hydroxyl radical (OH) and hydrated electron (e(aq)(-)). Studies are conducted with different initial concentrations of iopromide in pure water and in the presence of hydrogen peroxide, bicarbonate ion, or sulfite ion. E-beam absorbed dose of 19.6 kGy was required to achieve 90% degradation of 100 μM iopromide and the E-beam/H(2)O(2) system increased the removal efficiency by an amount of OH· generation. In the presence of OH scavengers (10 mM sulfite ion), the required dose for 90% removal of 100 μM iopromide was only 0.9 kGy. This greatly enhanced removal was achieved in the presence of OH· scavengers, which was rather unexpected and unlike the results obtained from most advanced oxidation process (AOP) experiments. The reasons for this enhancement can be explained by a kinetic study using the bimolecular rate constants of each reaction species. To explore the reaction scheme of iopromide with OH· or e(aq)(-) and the percent of mineralization for the two reaction paths, the total organic carbon (TOC), released iodide, and intermediates were analyzed.[Abstract] [Full Text] [Related] [New Search]