These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of choline transport in erythrocytes by n-alkanols.
    Author: Devés R, Krupka RM.
    Journal: Biochim Biophys Acta; 1990 Nov 30; 1030(1):32-40. PubMed ID: 2265191.
    Abstract:
    The choline transport system of erythrocytes is reversibly inhibited by ethanol, n-butanol, n-hexanol, n-octanol, and n-decanol, but not by n-dodecanol. Each methylene group in the alkyl chain contributes 560 cal/mol to the free energy of binding at the inhibitory site. Inhibition results from the cooperative binding of two molecules of an alcohol, judging by the Hill coefficient n of 1.7-1.9. The mechanism of inhibition is noncompetitive, and the partition of the carrier between inward-facing and outward-facing forms is unaffected by the alcohols; it follows that the four main carrier forms, the inner and outer free carrier, and the inner and outer carrier-substrate complex, are equally susceptible to inhibition. Hexanol and decanol accelerate the reaction of N-ethylmaleimide with a thiol group in the inner carrier channel, but ethanol and butanol, at concentrations that inhibit transport by 70%, do not. The disproportionate effects on substrate transport and the N-ethylmaleimide reaction are most simply explained as the direct result of binding of alcohol molecules in different regions of the carrier, rather than as the indirect result of a disturbance in the structure of the lipid bilayer induced by the alcohols.
    [Abstract] [Full Text] [Related] [New Search]