These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reversed-phase ion-pair liquid chromatography electrospray ionization tandem mass spectrometry for separation, sequencing and mapping of sites of base modification of isomeric oligonucleotide adducts using monolithic column. Author: Sharma VK, Glick J, Vouros P. Journal: J Chromatogr A; 2012 Jul 06; 1245():65-74. PubMed ID: 22652552. Abstract: In this manuscript, an efficient high resolution reversed phase-ion pairing-liquid chromatography electrospray ionization tandem mass spectrometry (RP-IP-LC-MS/MS) method for separation of isomeric modified oligonucleotides using a polymeric (styrene-divinylbenzene) monolithic capillary column is presented. The effects of different ion pairing reagents (IPR), their concentration, mobile phase additives and conditions were evaluated towards achieving the highest possible resolution and chromatographic separation of isomeric oligonucleotides. Ion pairing reagents and mobile phase conditions were evaluated using as model N-acetylaminofluorene [AAF] adducted ss-oligonucleotides (CCC CGA GCA ATC TCA AT). The optimized mobile phase conditions were then applied for the mapping of sites of base modification of AAF adducted 15-base pair oligonucleotide fragments containing codon 135 of the p53 gene and for profiling a complex synthetic oligonucleotide mixture. The optimized method utilizes a monolithic poly(styrene-divinylbenzene) capillary column, triethylammonium bicarbonate as ion pairing reagent and methanol as organic modifier to perform IP-RPLC-ESI-MS/MS separation. The results show that the method is simultaneously applicable not only to oligonucleotide fragments adducted separately by different carcinogens but also to the analysis of multiple adducts in the same oligonucleotide fragment in a single experiment. The method presents itself as a tool for the identification, characterization and mapping of oligonucleotide adducts as biomarkers for DNA damage from carcinogens.[Abstract] [Full Text] [Related] [New Search]