These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Controllable synthesis of hollow bipyramid β-MnO(2) and its high electrochemical performance for lithium storage.
    Author: Chen WM, Qie L, Shao QG, Yuan LX, Zhang WX, Huang YH.
    Journal: ACS Appl Mater Interfaces; 2012 Jun 27; 4(6):3047-53. PubMed ID: 22658801.
    Abstract:
    Three types of MnO2 nanostructures, viz., α-MnO2 nanotubes, hollow β-MnO2 bipyramids, and solid β-MnO2 bipyramids, have been synthesized via a simple template-free hydrothermal method. Cyclic voltammetry and galvanostatic charge/discharge measurements demonstrate that the hollow β-MnO2 bipyramids exhibit the highest specific capacity and the best cyclability; the capacity retains 213 mAh g(-1) at a current density of 100 mA g(-1) after 150 cycles. XRD patterns of the lithiated β-MnO2 electrodes clearly show the expansion of lattice volume caused by lithiation, but the structure keeps stable during lithium insertion/extraction process. We suggest that the excellent performance for β-MnO2 can be attributed to its unique electrochemical reaction, compact tunnel-structure and hollow architecture. The hollow architecture can accommodate the volume change during charge/discharge process and improve effective diffusion paths for both lithium ions and electrons.
    [Abstract] [Full Text] [Related] [New Search]