These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location.
    Author: Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, Reith S, Schnackenburg B, Gaemperli O, Wissmann L, Wyss CA, Kaufmann PA, Corti R, Boesiger P, Marx N, Lüscher TF, Jahnke C.
    Journal: Eur Heart J; 2012 Aug; 33(16):2016-24. PubMed ID: 22677136.
    Abstract:
    AIMS: Dynamic three-dimensional-cardiac magnetic resonance (3D-CMR) perfusion proved highly diagnostic for the detection of angiographically defined coronary artery disease (CAD) and has been used to assess the efficacy of coronary stenting procedures. The present study aimed to relate significant coronary lesions as assessed by fractional flow reserve (FFR) to the volume of myocardial hypoenhancement on 3D-CMR adenosine stress perfusion imaging and to define the inter-study reproducibility of stress inducible 3D-CMR hypoperfusion. METHODS AND RESULTS: A total of 120 patients with known or suspected CAD were examined in two CMR centres using 1.5 T systems. The protocol included cine imaging, 3D-CMR perfusion during adenosine infusion, and at rest followed by delayed enhancement (DE) imaging. Fractional flow reserve was recorded in epicardial coronary arteries and side branches with ≥2 mm luminal diameter and >40% severity stenosis (pathologic FFR < 0.75). Twenty-five patients underwent an identical repeat CMR examination for the determination of inter-study reproducibility of 3D-CMR perfusion deficits induced by adenosine. Three-dimensional CMR perfusion scans were visually classified as pathologic if one or more segments showed an inducible perfusion deficit in the absence of DE. Myocardial ischaemic burden (MIB) was measured by segmentation of the area of inducible hypoenhancement and normalized to left ventricular myocardial volume (MIB, %). Three-dimensional CMR perfusion resulted in a sensitivity, specificity, and diagnostic accuracy of 90, 82, and 87%, respectively. Substantial concordance was found for inter-study reproducibility [Lin's correlation coefficient: 0.98 (95% confidence interval: 0.96-0.99)]. CONCLUSION: Three-dimensional CMR stress perfusion provided high diagnostic accuracy for the detection of functionally significant CAD. Myocardial ischaemic burden measurements were highly reproducible and allowed the assessment of CAD severity.
    [Abstract] [Full Text] [Related] [New Search]