These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Motor activation in patients with Pantothenate-Kinase Associated Neurodegeneration: a functional magnetic resonance imaging study. Author: Stoeter P, Rodriguez-Raecke R, Vilchez C, Perez-Then E, Speckter H, Oviedo J, Roa-Sanchez P. Journal: Parkinsonism Relat Disord; 2012 Nov; 18(9):1007-10. PubMed ID: 22682757. Abstract: BACKGROUND: In a variety of dystonias, functional magnetic resonance imaging has shown deviations of cortical and basal ganglia activations within the motor network, which might cause the movement disturbances. Because these investigations have never been performed in secondary dystonia due to Pantothenate-Kinase Associated Neurodegeneration, we report our results in a small group of such patients from the Dominican Republic. METHODS: Functional magnetic resonance imaging was carried out in 7 patients with a genetically confirmed mutation of the PANK2 gene and a non-affected control group (matched pairs) using an event-related motor activation paradigm (hand movements). RESULTS: Compared to the control group (p ≤ 0.01), patients showed a larger amount of activated voxels starting in the contralateral cerebellum and contralateral premotor cortex 2 s before the actual hand movement. Whereas these "hyperactivations" gradually diminished over time, activations in the contralateral primary motor cortex and the supplementary motor area peaked during the next second and those of the contralateral putamen at the time of the actual hand movement. In a multiple regression analysis, all these areas correlated positively with the degree of dystonia of the contralateral arm as judged by the Burke-Fahn-Marsden-scale (p ≤ 0.001). CONCLUSION: As in other forms of dystonia, the increased activations of the motor system found in our patients could be related to the origin of the dystonic movements. Because in this condition the primary lesion affects the pallidum, a defect of the feed-back control mechanism between basal ganglia and cortex might be the responsible factor.[Abstract] [Full Text] [Related] [New Search]