These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polymerized spermine as a novel polycationic nucleic acid carrier system. Author: Du Z, Chen M, He Q, Zhou Y, Jin T. Journal: Int J Pharm; 2012 Sep 15; 434(1-2):437-43. PubMed ID: 22683452. Abstract: Spermine, an endogenous amino-group bearing monomer that condenses DNA in sperm, was used as the basic building block to form polycationic nucleic acid carriers via condensation with one of three linker molecules - bischloroformate, succinyl chloride, and glyoxal. The three cationic polymers, polyspermine carbamate (PSP-Carb), polyspermine amide (PSP-Amide) and polyspermine imine (PSP-Imine) were examined for their degradability, cytotoxicity, ability to condense nucleic acids to nanoparticles, and ability to transfect genes or siRNA to cells. PSP-Carb and PSP-Amide exhibited a half-life of more than 2 months when incubated in aqueous buffers at 37°C, while the half-life of PSP-Imine was 11h. Relative cytotoxicity of the polymers, as measured by COS-7 and HepG2 cell viability, was in the order of PSP-Carb>PSP-Amide>PSP-Imine. Each cationic polymer condensed the luciferase plasmid to nanoparticles of 150-200 nm diameters and with a zeta potential of +15-30 mV when the mass ratio of polymer-to-DNA was over 8/1. The three polycationic carriers showed similar luciferase transfection activity in COS-7 cells, while the transfection efficiency of PSP-Carb was significantly higher than that of the other two in HepG2 cells. PSP-Amide exhibited significantly higher gene silencing activity in COS-7 cells, suggesting the linkage structures play an important role in the activity of the polyspermine-based nucleic acid carriers.[Abstract] [Full Text] [Related] [New Search]