These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two high-resolution structures of potato endo-1,3-β-glucanase reveal subdomain flexibility with implications for substrate binding.
    Author: Wojtkowiak A, Witek K, Hennig J, Jaskolski M.
    Journal: Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):713-23. PubMed ID: 22683794.
    Abstract:
    Endo-1,3-β-glucanases are widely distributed among bacteria, fungi and higher plants. They are responsible for hydrolysis of the glycosidic bond in specific polysaccharides with tracts of unsubstituted β-1,3-linked glucosyl residues. The plant enzymes belong to glycoside hydrolase family 17 (GH17) and are also members of class 2 of pathogenesis-related (PR) proteins. X-ray diffraction data were collected to 1.40 and 1.26 Å resolution from two crystals of endo-1,3-β-glucanase from Solanum tuberosum (potato, cultivar Désirée) which, despite having a similar packing framework, represented two separate crystal forms. In particular, they differed in the Matthews coefficient and are consequently referred to as higher density (HD; 1.40 Å resolution) and lower density (LD; 1.26 Å resolution) forms. The general fold of the protein resembles that of other known plant endo-1,3-β-glucanases and is defined by a (β/α)(8)-barrel with an additional subdomain built around the C-terminal half of the barrel. The structures revealed high flexibility of the subdomain, which forms part of the catalytic cleft. Comparison with structures of other GH17 endo-1,3-β-glucanases revealed differences in the arrangement of the secondary-structure elements in this region, which can be correlated with sequence variability and may suggest distinct substrate-binding patterns. The crystal structures revealed an unusual packing mode, clearly visible in the LD structure, caused by the presence of the C-terminal His(6) tag, which extends from the compact fold of the enzyme molecule and docks in the catalytic cleft of a neighbouring molecule. In this way, an infinite chain of His-tag-linked protein molecules is formed along the c direction.
    [Abstract] [Full Text] [Related] [New Search]