These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-control of HGF regulation on human trophoblast cell invasion via enhancing c-Met receptor shedding by ADAM10 and ADAM17.
    Author: Yang Y, Wang Y, Zeng X, Ma XJ, Zhao Y, Qiao J, Cao B, Li YX, Ji L, Wang YL.
    Journal: J Clin Endocrinol Metab; 2012 Aug; 97(8):E1390-401. PubMed ID: 22689693.
    Abstract:
    CONTEXT: Hepatocyte growth factor (HGF)/c-Met signaling has been implicated in mammalian placental development. Integral c-Met can be released from endothelial cell membrane by proteolysis to form a soluble, truncated protein [soluble Met (sMet)], which is biochemically able to bind HGF and may disrupt HGF/c-Met signaling. By far, production of sMet in human placenta has not been reported, and the shedding mechanism remains unclear. OBJECTIVES AND DESIGN: In this study, production of sMet in healthy pregnant placenta and preeclamptic ones was compared, and the role of sMet on trophoblast cell invasion as well as the regulation of c-Met shedding by HGF were investigated in an immortal trophoblast cell line, B6Tert-1. RESULTS: Placenta productions of sMet, pro- and active forms of a disintegrin and metalloprotease 10 (ADAM10) and ADAM17 in preeclamptic patients were significantly higher than those in normal pregnant women. In B6Tert-1 cells, the HGF-induced promotion on cell invasion and activation of MAPK and AKT could be extensively blocked by sMet. ADAM10 and ADAM17, but not ADAM12, were explored to be sheddases of c-Met. HGF down-regulated c-Met receptor expression, whereas it up-regulated pro- and active/mature forms of ADAM10 and ADAM17 expression, which resulted in enhanced sMet production. Stimulation of H(2)O(2) caused an increase in active ADAM10, pro-ADAM17, and active ADAM17 levels and thus excessive c-Met shedding. CONCLUSIONS: HGF could negatively self-control its regulatory effect on trophoblast cell invasion via enhancing proteolysis of its receptor. Unbalancing of HGF self-control by oxidative stress may lead to impeding placentation in relevance to preeclampsia.
    [Abstract] [Full Text] [Related] [New Search]