These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Online object tracking with sparse prototypes.
    Author: Wang D, Lu H, Yang MH.
    Journal: IEEE Trans Image Process; 2013 Jan; 22(1):314-25. PubMed ID: 22692912.
    Abstract:
    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking algorithm with sparse prototypes, which exploits both classic principal component analysis (PCA) algorithms with recent sparse representation schemes for learning effective appearance models. We introduce l(1) regularization into the PCA reconstruction, and develop a novel algorithm to represent an object by sparse prototypes that account explicitly for data and noise. For tracking, objects are represented by the sparse prototypes learned online with update. In order to reduce tracking drift, we present a method that takes occlusion and motion blur into account rather than simply includes image observations for model update. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
    [Abstract] [Full Text] [Related] [New Search]